Eco3D is an initiative started by Jeppe Revall Frisvad, Knut Conradsen, and Henrik Aanæs to coordinate our research activities in sensors and 3D geometric and radiometric modeling in relation to the cyber-physical 3D ecosystem. This ecosystem is an abstraction of the fact that we oftentimes wish to manipulate the physical world based on sensor generated digital or cyber models of this physical world. This is illustrated in the following diagram.

This ecosystem encompasses much of the research we do at the Section for Visual Computing at the Technical University of Denmark, and is as such a nice framework for exploiting the possible synergies within our group. Examples of this ecosystem are

Furthermore, we have noticed that most of the individual parts of this ecosystem are vibrant research topics, but that very few consider these parts as a whole. We believe that there is significant potential in such a holistic approach, and have the good fortune to take it, in that we have experts within most - if not all - of the individual parts on 'sensors' and 'synthesis prediction & modeling' and have close collaboration with top researchers doing actuators, like 3D print and robotics.

As seen under People, this initiative has a sufficient number of participants, working on parts of the ecosystem. A benefit of taking the holistic ecosystem approach to our research is that it also enforces relevant performance metrics on our research in the individual parts. In 2015, the first year of the initiative, our collaboration has focus on

We also have had a lot of activities in the individual parts via the existing projects of the individual participants.

Current research projects

3D Scanning

We investigate the process of optical surface scanning to see if the statistical quality can reach a level high enough for such a scanner to be used as a full grade metrological device.

3D printing

We focus on digitalization and quality control of the 3D printing process. We also develop and evaluate novel 3D printing (additive manufacturing) systems for use within the design space of manufacturing and rapid prototyping.

Appearance

We create efficient rendering techniques and mathematical models that predict the appearance of materials from their physical microstructure. The goal is to interactively compute realistic images of real-world materials.

BRDF Acquisition

Having densly sampled BRDFs of the surface of each object in a given scene allows for photorealistic rendering of that scene. This project aims at better acquisition of surface BRDFs in 3D scenes composed of simple geometries.

Non-Rigid Structure From Motion

We create a realistic dataset for evaluation of Non-Rigid Structured From Motion algorithms. The dataset provides a dense point set with an accurate ground truth. This is accomplished through stop-motion animated animatronics with dense structured light scanning for each frame.

Transparency

We have created a multi-view stereo (MVS) dataset where the focus is on reconstruction of geometry and appearance. Three glass objects with different radiometric properties are selected and multiple MVS scenes are captured, reconstructed and rendered.

Recent Publications

Neural SSS: lightweight object appearance representation [2024]

T. TG, D. M. Tran, H. W. Jensen, R. Ramamoorthi, J. R. Frisvad
Computer Graphics Forum , 43(4), e15158

Digitizing translucent object appearance by validating computed optical properties [2024]

D. M. Tran, M. B. Jensen, P. SantafĂ©-Gabarda, S. Källberg, A. Ferrero, M. R. Hannemose, J. R. Frisvad
Applied Optics , 63(16), 4317-4331

Surface roughness of as-printed polymers: a comprehensive review [2023]

A. P. Golhin, R. Tonello, J. R. Frisvad, S. Grammatikos, A. Strandlie
The International Journal of Advanced Manufacturing Technology , 127(3-4), 987-1043

Surface roughness and grain size variation when 3D printing polyamide 11 parts using selective laser sintering [2023]

R. Tonello, K. Conradsen, D. B. Pedersen, J. R. Frisvad
Polymers , 15(13), 2967

Fast impression painting using multi-color fused deposition modeling with a diamond hotend [2022]

R. Tonello, F. Abedini, D. B. Pedersen, J. R. Frisvad
ASPE and euspen Summer Topical Meeting on Advancing Precision in Additive Manufacturing , 83-87

Instrumentation for Estimating Surface Radiometry [2021]

M. E. B. Doest
Department of Applied Mathematics and Computer Science, Technical University of Denmark

A benchmark and evaluation of non-rigid structure from motion [2021]

S. H. N. Jensen, M. E. B. Doest, H. Aanæs, A. Del_Bue
International Journal of Computer Vision , 129(4), 882-899

Estimating and Simulating Structure and Motion [2021]

J. N. Jensen
Department of Applied Mathematics and Computer Science, Technical University of Denmark

Surface reconstruction from structured light images using differentiable rendering [2021]

J. N. Jensen, M. Hannemose, J. A. Bærentzen, J. Wilm, J. R. Frisvad, A. B. Dahl
Sensors , 21(4), 1068

Multi-Scale Radiative Transfer Simulation for the Scattering of Light by Microgeometry [2020]

V. Falster
Department of Applied Mathematics and Computer Science, Technical University of Denmark

Differentiable Formulations for Inverse Rendering [2020]

M. Hannemose
Department of Applied Mathematics and Computer Science, Technical University of Denmark

Alignment of rendered images with photographs for testing appearance models [2020]

M. Hannemose, M. E. B. Doest, A. Luongo, S. K. S. Gregersen, J. Wilm, J. R. Frisvad
Applied Optics , 59(31), 9786-9798

Computing the bidirectional scattering of a microstructure using scalar diffraction theory and path tracing [2020]

V. Falster, A. Jarabo, J. R. Frisvad
Computer Graphics Forum (PG 2020) , 39(7), 231-242

Survey of models for acquiring the optical properties of translucent materials [2020]

J. R. Frisvad, S. A. Jensen, J. S. Madsen, A. Correia, L. Yang, S. K. S. Gregersen, Y. Meuret, P. Hansen
Computer Graphics Forum (EG 2020) , 39(2), 729-755

Microstructure control in 3D printing with digital light processing [2020]

A. Luongo, V. Falster, M. E. B. Doest, M. M. Ribo, E. R. Eiriksson, D. B. Pedersen, J. R. Frisvad
Computer Graphics Forum , 39(1), 347-359

Measurement of polymers with 3D optical scanners: evaluation of the subsurface scattering effect through five miniature step gauges [2020]

M. G. Guerra, S. S. Gregersen, J. R. Frisvad, L. De_Chiffre, F. Lavecchia, L. M. Galantucci
Measurement Science and Technology , 31(1), 015010

Optimal, non-rigid alignment for feature-preserving mesh denoising [2019]

F. Gawrilowicz, J. A. Bærentzen
Proceedings of 3DV 2019 , 415-423

Superaccurate camera calibration via inverse rendering [2019]

M. Hannemose, J. Wilm, J. R. Frisvad
Modeling Aspects in Optical Metrology VII , Proceedings of SPIE, vol. 11057, 1105717

Using a robotic arm for measuring BRDFs [2019]

R. A. Lyngby, J. B. Matthiassen, J. R. Frisvad, A. B. Dahl, H. Aanæs
Image Analysis (Proceedings of SCIA 2019) , Lecture Notes in Computer Science, vol. 11482, 184-196

Material-based segmentation of objects [2019]

J. D. Stets, R. A. Lyngby, J. R. Frisvad, A. B. Dahl
Image Analysis (Proceedings of SCIA 2019) , Lecture Notes in Computer Science, vol. 11482, 152-163

Predicting and 3D Printing Material Appearance [2019]

A. Luongo
Department of Applied Mathematics and Computer Science, Technical University of Denmark

Development and metrological validation of a new automated scanner system for freeform measurements on wind turbine blades in the production [2019]

R. A. Lyngby, E. Nielsen, L. De_Chiffre, H. Aanæs, A. B. Dahl
Precision Engineering , 56, 255-266

Single-shot analysis of refractive shape using convolutional neural networks [2019]

J. D. Stets, Z. Li, J. R. Frisvad, M. Chandraker
IEEE Winter Conference on Applications of Computer Vision , 995-1003

Autonomous Optical Inspection of Large Scale Freeform Surfaces [2018]

R. A. Lyngby
Department of Applied Mathematics and Computer Science, Technical University of Denmark

Towards Interactive Photorealistic Rendering [2018]

A. Dal_Corso
Department of Applied Mathematics and Computer Science, Technical University of Denmark

A benchmark and evaluation of non-rigid structure from motion [2018]

S. H. N. Jensen, A. Del_Bue, M. E. B. Doest, H. Aanæs
arXiv:1801.08388v2

Modeling the anisotropic reflectance of a surface with microstructure engineered to obtain visible contrast after rotation [2017]

A. Luongo, V. Falster, M. B. Doest, D. Li, F. Regi, Y. Zhang, G. Tosello, J. B. Nielsen, H. Aanæs, J. R. Frisvad
Proceedings of International Conference on Computer Vision Workshop (ICCVW 2017) , IEEE, 159-165

A variational study on BRDF reconstruction in a structured light scanner [2017]

J. B. Nielsen, J. D. Stets, R. A. Lyngby, H. Aanæs, A. B. Dahl, J. R. Frisvad
Proceedings of International Conference on Computer Vision Workshop (ICCVW 2017) , IEEE, 143-152

Scene reassembly after multimodal digitization and pipeline evaluation using photorealistic rendering [2017]

J. D. Stets, A. Dal_Corso, J. B. Nielsen, R. A. Lyngby, S. H. N. Jensen, J. Wilm, M. B. Doest, C. Gundlach, E. R. Eiriksson, K. Conradsen, A. B. Dahl, J. A. Bærentzen, J. R. Frisvad, H. Aanæs
Applied Optics , 56(27), 7679-7690

Robot Based BRDF Measurement System [2017]

M. E. B. Doest
Department of Applied Mathematics and Computer Science, Technical University of Denmark

Computer Vision for Additive Manufacturing [2017]

E. R. Eiriksson
Department of Applied Mathematics and Computer Science, Technical University of Denmark

Augmented reality interfaces for additive manufacturing [2017]

E. R. Eiriksson, D. B. Pedersen, J. R. Frisvad, L. Skovmand, V. Heun, P. Maes, H. Aanæs
Image Analysis (Proceedings of SCIA 2017) , Springer, Lecture Notes in Computer Science, vol. 10269, 334-345

An error analysis of structured light scanning of biological tissue [2017]

S. H. N. Jensen, J. Wilm, H. Aanæs
Image Analysis (Proceedings of SCIA 2017) , Springer, Lecture Notes in Computer Science, vol. 10269, 135-145

On Practical Sampling of Bidirectional Reflectance [2016]

J. B. Nielsen
Department of Applied Mathematics and Computer Science, Technical University of Denmark

Designing for color in additive manufacturing [2016]

E. R. Eiriksson, A. Luongo, J. R. Frisvad, D. B. Pedersen, H. Aanæs
Proceedings of ASPE 2016 Summer Topical Meeting on Dimensional Accuracy and Surface Finish in Additive Manufacturing , 98-102

In-situ monitoring in additive manufacturing using contact image sensors [2016]

D. B. Pedersen, E. R. Eiriksson, H. Aanæs, H. N. Hansen
Proceedings of the ASPE 2016 Summer Topical Meeting on Dimensional Accuracy and Surface Finish in Additive Manufacturing , 114-118

Interactive appearance prediction for cloudy beverages [2016]

A. Dal_Corso, J. R. Frisvad, T. K. Kjeldsen, J. A. Bærentzen
Workshop on Material Appearance Modeling (MAM 2016) , The Eurographics Association, 1-4

Hybrid fur rendering: combining volumetric fur with explicit hair strands [2016]

T. G. Andersen, V. Falster, J. R. Frisvad, N. J. Christensen
The Visual Computer , 32(6), 739-749

Precision and accuracy parameters in structured light 3-D scanning [2016]

E. R. Eiriksson, J. Wilm, D. B. Pedersen, H. Aanæs
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , XL-5/W8, 7-15

Real Time Structured Light and Applications [2016]

J. Wilm
Department of Applied Mathematics and Computer Science, Technical University of Denmark

Large-scale data for multiple-view stereopsis [2016]

H. Aanæs, R. R. Jensen, G. Vogiatzis, E. Tola, A. B. Dahl
International Journal of Computer Vision , Springer, 1-16

Interactive directional subsurface scattering and transport of emergent light [2016]

A. Dal_Corso, J. R. Frisvad, J. Mosegaard, J. A. Bærentzen
The Visual Computer , 33(3), 371-383

On optimal, minimal BRDF sampling for reflectance acquisition [2015]

J. B. Nielsen, H. W. Jensen, R. Ramamoorthi
ACM Transactions on Graphics (TOG) , 34(6), 186:1-186:11

Our 3D vision data-sets in the making [2015]

H. Aanæs, K. Conradsen, A. Dal_Corso, A. B. Dahl, A. D. Bue, M. E. B. Doest, J. R. Frisvad, S. H. N. Jensen, J. B. Nielsen, J. D. Stets, G. Vogiatzis
Conference on Computer Vision and Pattern Recognition 2015 , Institute of Electrical and Electronics Engineers

Accuracy in robot generated image data sets [2015]

H. Aanæs, A. B. Dahl
Image Analysis (Proceedings of SCIA 2015) , Springer, Lecture Notes in Computer Science, vol. 9127, 472-479

Quality assurance based on descriptive and parsimonious appearance models [2015]

J. B. Nielsen, E. R. Eiriksson, R. L. Kristensen, J. Wilm, J. R. Frisvad, K. Conradsen, H. Aanæs
Workshop on Material Appearance Modeling , The Eurographics Association, 21-24

Predicting color output of additive manufactured parts [2015]

E. R. Eiriksson, D. B. Pedersen, H. Aanæs
Proceedings of ASPE 2015 Spring Topical Meeting on Achieving Precision Tolerances in Additive Manufacturing

Large scale multi-view stereopsis evaluation [2014]

R. R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, H. Aanæs
2014 IEEE Conference on Computer Vision and Pattern Recognition , 406-413